开源模型测评仓库
模型列表
| 模型 | git仓库 | 模型特点 | 模型大小 | 运行资源 |
|---|---|---|---|---|
| Llama 3 | github | 8B / 70B | ||
| Phi-3 | huggingface | 小巧可以运行在手机上 | ||
| Qwen1.5-110B | huggingface | |||
| BLOOM | bigscience.huggingface.co | |||
| BERT | github | |||
| Yi-Chat | github |
huggingface由于网络问题,可能部分环境被墙或被限速,可以切换至国内镜像站点
Llama
Meta 推出
Phi-3
Phi-3是微软AI研究院的新开源语言模型,具备小巧且高效的特性,赢得市场青睐。系列包括Phi-3-Mini、Phi-3-Small和Phi-3-Medium三种规模。Phi-3-Mini虽小,但性能与大型模型相当,适合资源有限环境。Phi-3-Small和Phi-3-Medium在扩展数据集支持下性能更佳。Phi-3系列以小巧设计、卓越性能和灵活扩展能力,为语言模型领域注入新活力,满足不同用户需求。
https://arxiv.org/abs/2404.14219
Qwen1.5-110B
通义千问公司发布的一款千亿级参数模型——Qwen1.5-110B。经过详尽的性能测试,Qwen1.5-110B凭借其卓越表现重返SOTA开源模型之巅,甚至超越了强大的Llama 3 70B,成为了当前最顶尖的开源大模型。值得一提的是,Qwen1.5-110B与Qwen1.5系列的其他模型在结构上保持了一致性,均采用了分组查询注意力机制,保证了推理的高效性。此外,该模型还支持高达32K的上下文,同时兼容多种语言,包括英语、中文、法语、西班牙语、德语、俄语、韩语和日语等,满足了全球用户的需求。
BLOOM
BLOOM是一个经过一年合作开发的自回归LLM训练模型,利用了工业级计算资源和大量文本数据生成文本。其发布是生成式AI民主化的里程碑。拥有1760亿参数的BLOOM,是强大的开源LLMs之一,能以46种语言和13种编程语言生成连贯准确的文本。其特点是透明度高,源代码和训练数据均可访问,方便运行、研究和改进。此外,BLOOM可通过Hugging Face生态系统免费使用。
BERT
BERT是早期大型语言模型的代表作,作为Transformer潜力的首批实验之一,BERT在2018年开源后迅速在自然语言处理任务中取得先进性能。因其创新和开源性质,BERT成为最受欢迎的LLMs之一,有数千种开源、免费和预训练的模型用于各种用例。但近年来,谷歌对开源大模型的态度有所冷漠。
Falcon 180B
Falcon 40B在开源LLM社区备受赞誉,成为Hugging Face榜首。新推出的Falcon 180B展现出专有与开源LLM间的差距正迅速缩小。阿联酋技术创新研究所透露,Falcon 180B正在接受1800亿参数的训练,计算能力强大,已在多种NLP任务中超越LLaMA 2和GPT-3.5。虽然免费供商业和研究使用,但运行Falcon 180B需要庞大计算资源。
Yi-Chat
Yi系列模型是01.AI推出的强大开源语言模型,以双语能力领先领域。利用3T多语言语料库训练,具备卓越的语言理解、常识推理和阅读理解等能力。2024年1月数据显示,Yi-34B-Chat在AlpacaEval排名第二,仅次于GPT-4 Turbo,超越其他LLM如GPT-4、Mixtral、Claude。在各种基准测试中,Yi-34B排名第一,超越Falcon-180B、Llama-70B、Claude等开源模型。这使得Yi系列模型成为全球领先的LLM之一,展现出广阔的应用前景。